学校主页 加入收藏 English
当前位置: 首页 >> 师资团队 >> 教师队伍 副教授
任志茹
 
发布时间:2015年01月06日    点击次数: 次    更新日期:2021年03月22日

任志茹

理学博士,副教授

地址:北京市海淀区学院南路39号拉斯维加斯5357cc,100081

Email:renzr@cufe.edu.cn

研究方向

1.数值代数

2.科学计算

教育背景

2002年9月—2006年7月 武汉大学数学与统计学院信息与计算科学专业,理学学士

2006年9月—2011年6月 中国科学院数学与系统科学研究院计算数学所,理学博士

工作经历

2015年11月—至今 拉斯维加斯5357cc 副教授

2018年9月—2019年9月 美国加州大学伯克利分校数学系 访问学者

2014年6月—2015年10月 拉斯维加斯5357cc 讲师

2011年7月—2014年6月 中国科学院数学与系统科学研究院 博士后

学术论文

[1]L.-L. Zhang and Z.-R. Ren*, A modified modulus-based multigrid method for linearcomplementarity problems arising from free boundary problems,Applied Numerical Mathematics,2021, 164: 89-100. (SCI)

[2]Y. Cao and Z.-R. Ren*, A local positive-(semi)definite shift-splitting preconditionerfor non-Hermitian saddle point problems with applications to time-harmonic eddy currentmodels,East Asian Journal on Applied Mathematics, 2020, 10(1): 135-157. (SCI)

[3]Y. Cao,Z.-R. Ren* and L.-Q. Yao, Improved relaxed positive-definite and skew-Hermitian splitting preconditioners for saddle point problems,Journal of ComputationalMathematics, 2019, 37(1): 95-111. (SCI)

[4]Y.-F. Ke, C.-F. Ma and Z.-R. Ren*, A new alternating positive semidefinitesplitting preconditioner for saddle point problems from time-harmonic eddy current models,Frontiers of Mathematics in China, 2018, 13(2): 313-340. (SCI)

[5]Z.-R. Ren, Y. Cao* and Q. Niu, Spectral analysis of the generalized shift-splitting preconditioned saddle point problem,Journal of Computational and Applied Mathematics,2017, 311: 539-550. (SCI)

[6]Y. Cao, S.-X. Miao and Z.-R. Ren*, On preconditioned generalized shift-splittingiteration methods for saddle point problems,Computer & Mathematics with Applications,2017, 74(4): 859-872. (SCI)

[7]L.-L. Zhang* and Z.-R. Ren, On convergence of modulus-based matrix splitting iterationmethods for linear complementarity problems of M-matrices (in Chinese),ActaMathematica Sinica, 2017,60(4):547-556.(AA)

[8]Z.-R. Ren* and Y. Cao, An alternating positive semidefinite splitting preconditionerfor saddle point problems from time-harmonic eddy current models,IMA Journal of Numerical Analysis, 2016, 36(2): 922-946. (SCI)

[9]Y. Cao,Z.-R. Ren* and Q. Shi, A simplified HSS preconditioner for generalizedsaddle point problems,BIT Numerical Mathematics, 2016, 56(2): 423-439. (SCI)

[10]Z.-R. Ren, Y. Cao* and L.-L. Zhang, On preconditioned MHSS real-valued iterationmethods for a class of complex symmetric indefinite linear systems,East Asian Journal onApplied Mathematics, 2016, 6(2): 192-210. (SCI)

[11]C. Lang and Z.-R. Ren*, Inexact rotated block triangular preconditioners for a classof block two-by-two matrices,Journal of Engineering Mathematics, 2015, 93(1): 87-98. (SCI)

[12]L.-L. Zhang*, Y.-P. Zhang and Z.-R. Ren, New convergence proofs of modulus-based synchronous multi-splitting iteration methods for linear complementarity problems,Linear Algebra and its Applications, 2015, 481: 83-93. (SCI)

[13]Y. Cao and Z.-R. Ren*, Two variants of the PMHSS iteration method for a class ofcomplex symmetric indefinite linear systems,Applied Mathematics and Computation, 2015, 264: 61-71. (SCI)

[14]L.A. Krukier*, B.L. Krukier and Z.-R. Ren, Generalized skew-Hermitian triangularsplitting iteration methods for saddle-point linear systems,Numerical Linear Algebra withApplications, 2014, 21(1): 152-170. (SCI)

[15]Z.-Z. Bai*, R.H. Chan and Z.-R. Ren, On order-reducible sinc discretizationand block- diagonal preconditioning methods for linear third-order ordinary differentialequations,Numerical Linear Algebra with Applications, 2014, 21(1): 108-135. (SCI)

[16]Z.-Z. Bai* and Z.-R. Ren, Block-tridiagonal preconditioning methods for linearthird-order ordinary differential equations based on reduced-order sinc discretization,JapanJournal of Industrial and Applied Mathematics, 2013, 30(3): 511-527. (SCI)

[17]L.-L. Zhang* and Z.-R. Ren, Improved convergence of modulus-based matrix splittingiteration methods for linear complementarity problems,Applied Mathematics Letters, 2013, 26(6): 638-642. (SCI)

[18]Z.-R. Ren*, On structured preconditioning methods for sinc systems of linear third-order ordinary differential equations (in Chinese), Mathematica Numerica Sinica (A),2013, 35(3):305-322.(A)

[19]Z.-R. Ren*, Comparative study on order-reduced methods for linear third-order ordinarydifferential equations,Frontiers of Mathematics in China, 2012, 7(6): 1151-1168. (SCI)

[20]Z.-R. Ren*, Banded Toeplitz preconditioners for Toeplitz matrices from sinc methods,Journal of Computational Mathematics, 2012, 30(5): 533-543. (SCI)

[21]G.-F. Zhang*,Z.-R. Ren and Y.-Y. Zhou, On HSS-based constraint preconditionersfor generalized saddle-point problems,Numerical Algorithms, 2011, 57(2): 273-287. (SCI)

[22]Z.-Z. Bai*, R.H. Chan and Z.-R. Ren, On sinc discretization and bandedpreconditioning for linear third-order ordinary differential equation,Numerical Linear Algebrawith Applications, 2011, 18(3): 471-497. (SCI)

科研课题

国家自然科学基金面上项目(No. 11771467),2018.01—2021.12,主要参与人

中央财经大学青年教师发展基金(No. QJJ1517),2016.01—2017.12,课题主持人

国家自然科学基金青年项目(No. 11301521),2014.01—2016.12,课题主持人

所授课程

1.本科生:数学分析I、数学分析II、高等代数、数值代数、数值分析、数据科学算法II:数值计算

2.研究生:高等数值代数、高等数值分析

荣誉与奖励

1.山西省自然科学二等奖(3/4),2020年1月

2.中央财经大学基础课教学奖,2017年6月

3.应用数值代数奖,2016年10月

4.中央财经大学金钥匙文灯优秀教师奖,2016年6月

上一条:穆淑梅

下一条:孙晓伟

师资团队

          版权所有:拉斯维加斯5357cc - 5357cc拉斯维加斯首页入口  
          地址:北京市昌平区沙河高教园中央财经大学沙河校区1号学院楼   邮政编码:102206   电 话:(010)61776184    
          邮箱:samofcufe@cufe.edu.cn    
         

学院公众号